Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J. Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci 10: 273–280, 1987. doi:10.1016/0166-2236(87)90172-X.
Crossref , ISIEccles JC. The Physiology of Nerve Cells. Baltimore, MD: The Johns Hopkins Press, 1957.
Egger V, Svoboda K, Mainen ZF. Dendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low-threshold spike. J Neurosci 25: 3521–3530, 2005. doi:10.1523/JNEUROSCI.4746-04.2005.
Egger V, Urban NN. Dynamic connectivity in the mitral cell-granule cell microcircuit. Semin Cell Dev Biol 17: 424–432, 2006. doi:10.1016/j.semcdb.2006.04.006.
Forest J, Chalençon L, Midroit M, Terrier C, Caillé I, Sacquet J, Benetollo C, Martin K, Richard M, Didier A, Mandairon N. Role of adult-born versus preexisting neurons born at P0 in olfactory perception in a complex olfactory environment in mice. Cereb Cortex 30: 534–549, 2020. doi:10.1093/cercor/bhz105.
Fourcaud-Trocmé N, Courtiol E, Buonviso N. Two distinct olfactory bulb sublaminar networks involved in gamma and beta oscillation generation: a CSD study in the anesthetized rat. Front Neural Circuits 8: 88, 2014. doi:10.3389/fncir.2014.00088.
Freeman WJ. Mass Action in the Nervous System. New York: Academic, 1975.
Fukunaga I, Herb JT, Kollo M, Boyden ES, Schaefer AT. Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb. Nat Neurosci 17: 1208–1216, 2014. doi:10.1038/nn.3760.
Haberly LB. Neuronal circuitry in olfactory cortex. Anatomy and functional implications. Chem Senses 10: 219–238, 1985. doi:10.1093/chemse/10.2.219.
Crossref , ISIHardy D, Saghatelyan A. Different forms of structural plasticity in the adult olfactory bulb. Neurogenesis (Austin) 4: e1301850, 2017. doi:10.1080/23262133.2017.1301850.
Hirata Y. Some observations on the fine structure of synapses in the olfactory bulb of the mouse, with particular reference to the atypical synaptic configurations. Arch Histol Jpn 24: 303–317, 1964. doi:10.1679/aohc1950.24.293.
Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–540, 1952. doi:10.1113/jphysiol.1952.sp004764.
Jackowski A, Parnavelas JG, Lieberman AR. The reciprocal synapse in the external plexiform layer of the mammalian olfactory bulb. Brain Res 159: 17–28, 1978. doi:10.1016/0006-8993(78)90106-3.
Jahr CE, Nicoll RA. An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. J Physiol 326: 213–234, 1982. doi:10.1113/jphysiol.1982.sp014187.
Kuffler SW. Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16: 37–68, 1953. doi:10.1152/jn.1953.16.1.37.
Lagier S, Panzanelli P, Russo RE, Nissant A, Bathellier B, Sassoè-Pognetto M, Fritschy JM, Lledo PM. GABAergic inhibition at dendrodendritic synapses tunes ? oscillations in the olfactory bulb. Proc Natl Acad Sci USA 104: 7259–7264, 2007. doi:10.1073/pnas.0701846104.
Li G, Cleland TA. A coupled-oscillator model of olfactory bulb gamma oscillations. PLOS Comput Biol 13: e1005760, 2017. doi:10.1371/journal.pcbi.1005760.
Liu S, Puche AC, Shipley MT. The interglomerular circuit potently inhibits olfactory bulb output neurons by both direct and indirect pathways. J Neurosci 36: 9604–9617, 2016. doi:10.1523/JNEUROSCI.1763-16.2016.
Lowe G. Inhibition of backpropagating action potentials in mitral cell secondary dendrites. J Neurophysiol 88: 64–85, 2002. doi:10.1152/jn.2002.88.1.64.
Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11: 173–189, 1993. doi:10.1016/0896-6273(93)90281-U.
McTavish TS, Migliore M, Shepherd GM, Hines ML. Mitral cell spike synchrony modulated by dendrodendritic synapse location. Front Comput Neurosci 6: 3, 2012. doi:10.3389/fncom.2012.00003.
Migliore M, Shepherd GM. Dendritic action potentials connect distributed dendrodendritic microcircuits. J Comput Neurosci 24: 207–221, 2008. doi:10.1007/s10827-007-0051-9.
Migliore M, Hines ML, McTavish TS, Shepherd GM. Functional roles of synaptic clusters in the mitral-granule cell network of the olfactory bulb. Front Integr Nuerosci 4: 122, 2010. doi:10.3389/fnint.2010.00122.
Moreno MM, Linster C, Escanilla O, Sacquet J, Didier A, Mandairon N. Olfactory perceptual learning requires adult neurogenesis. Proc Natl Acad Sci USA 106: 17980–17985, 2009. doi:10.1073/pnas.0907063106.
Mori K, Yoshihara Y. Molecular recognition and olfactory processing in the mammalian olfactory system. Prog Neurobiol 45: 585–619, 1995. doi:10.1016/0301-0082(94)00058-P.
Nagayama S, Homma R, Imamura F. Neuronal organization of olfactory bulb circuits. Front Neural Circuits 8: 98, 2014. doi:10.3389/fncir.2014.00098.
Neville KR, Haberly LB. Beta and gamma oscillations in the olfactory system of the urethane-anesthetized rat. J Neurophysiol 90: 3921–3930, 2003. doi:10.1152/jn.00475.2003.
Nicoll RA. Inhibitory mechanisms in the rabbit olfactory bulb: dendrodendritic mechanisms. Brain Res 14: 157–172, 1969. doi:10.1016/0006-8993(69)90037-7.
Nicoll RA. Pharmacological evidence for GABA as the transmitter in granule cell inhibition in the olfactory bulb. Brain Res 35: 137–149, 1971. doi:10.1016/0006-8993(71)90600-7.
Osinski BL, Kay LM. Granule cell excitability regulates gamma and beta oscillations in a model of the olfactory bulb dendrodendritic microcircuit. J Neurophysiol 116: 522–539, 2016. doi:10.1152/jn.00988.2015.
Phillips CG, Powell TPS, Shepherd GM. The mitral cells of the rabbit olfactory bulb. J Physiol 156: 26P–27P, 1961.
Phillips CG, Powell TPS, Shepherd GM. Response of mitral cells to stimulation of the lateral olfactory tract in the rabbit. J Physiol 168: 65–88, 1963. doi:10.1113/jphysiol.1963.sp007178.
Poirazi P, Papoutsi A. Illuminating dendritic function with computational models. Nat Rev Neurosci 21: 303–321, 2020. doi:10.1038/s41583-020-0301-7.
Pressler RT, Strowbridge BW. Direct recording of dendrodendritic excitation in the olfactory bulb: divergent properties of local and external gluamtergic inputs govern synaptic integration in granule cells. J Neurosci 37: 11774–11788, 2017. doi:10.1523/JNEUROSCI.2033-17.2017.
Pressler RT, Strowbridge BW. Functional specialization of interneuron dendrites: identification of action potential initiation zone in axonless olfactory bulb granule cells. J Neurosci 39: 9674–9688, 2019. doi:10.1523/JNEUROSCI.1763-19.2019.
Rall W. Theoretical significance of dendritic trees for neuronal input-output relations. In: Neural Theory and Modeling, edited by Reiss RF. Palo Alto, CA: Stanford University Press, 1964, p. 117–146.
Rall W, Shepherd GM. Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J Neurophysiol 31: 884–915, 1968. doi:10.1152/jn.1968.31.6.884.
Rall W, Shepherd GM, Reese TS, Brightman MW. Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp Neurol 14: 44–56, 1966. doi:10.1016/0014-4886(66)90023-9.
Ramon-Moliner E. The reciprocal synapses of the olfactory bulb: questioning the evidence. Brain Res 128: 1–20, 1977. doi:10.1016/0006-8993(77)90232-3.
Reese TS, Brightman MW. Olfactory surface and central olfactory connections in some vertebrates. In: Taste and Smell in Vertebrates, edited by Wolstenhome GEW, Knight J. London, UK: J&A Churchill, 1970, p. 115–149.
Saghatelyan A, Roux P, Migliore M, Rochefort C, Desmaisons D, Charneau P, Shepherd GM, Lledo P-M. Activity-dependent adjustments of the inhibitory network in the olfactory bulb following early postnatal deprivation. Neuron 46: 103–116, 2005. doi:10.1016/j.neuron.2005.02.016.
Sailor KA, Valley MT, Wiechert MT, Riecke H, Sun GJ, Adams W, Dennis JC, Sharafi S, Ming GL, Song H, Lledo P-M. Persistent structural plasticity optimizes sensory information processing in the olfactory bulb. Neuron 91: 384–396, 2016. doi:10.1016/j.neuron.2016.06.004.
Schoppa NE, Kinzie JM, Sahara Y, Segerson TP, Westbrook GL. Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. J Neurosci 18: 6790–6802, 1998. doi:10.1523/JNEUROSCI.18-17-06790.1998.
Segev I, Rall W. Computational study of an excitable dendritic spine. J Neurophysiol 60: 499–523, 1988. doi:10.1152/jn.1988.60.2.499.
Shao Z, Liu S, Zhou F, Puche AC, Shipley MT. Reciprocal inhibitory glomerular circuits contribute to excitation-inhibition balance in the mouse olfactory bulb. eNeuro 6: ENEURO.0048-19.2019, 2019. doi:10.1523/ENEURO.0048-19.2019.
Shen GY, Chen WR, Midtgaard J, Shepherd GM, Hines ML. Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings. J Neurophysiol 82: 3006–3020, 1999. doi:10.1152/jn.1999.82.6.3006.
Shepherd GM. Transmission in the olfactory pathway (DPhil thesis). Oxford, UK: Oxford University, 1962.
Shepherd GM. Responses of mitral cells to olfactory nerve volleys in the rabbit. J Physiol 168: 89–100, 1963a. doi:10.1113/jphysiol.1963.sp007179.
Shepherd GM. Neuronal systems controlling mitral cell excitability. J Physiol 168: 101–117, 1963b. doi:10.1113/jphysiol.1963.sp007180.
Shepherd GM. Physiological evidence for dendrodendritic synaptic interactions in the rabbit’s olfactory glomerulus. Brain Res 32: 212–217, 1971. doi:10.1016/0006-8993(71)90168-5.
Shepherd GM. Synaptic organization of the mammalian olfactory bulb. Physiol Rev 52: 864–917, 1972. doi:10.1152/physrev.1972.52.4.864.
Shepherd GM. The Synaptic Organization of the Brain. An Introduction. New York: Oxford University Press, 1974.
Shepherd GM. Foundations of the Neuron Doctrine. New York: Oxford University Press, 1991.
Shepherd GM. Foundations of the Neuron Doctrine (2nd ed.). New York: Oxford University Press, 2016.
Shepherd GM (Editor). The Synaptic Organization of the Brain (5th ed.). New York: Oxford University Press, 2004.
Shepherd GM, Brayton RK. Computer simulation of a dendrodendritic synaptic circuit for self- and lateral-inhibition in the olfactory bulb. Brain Res 175: 377–382, 1979. doi:10.1016/0006-8993(79)91020-5.
Shepherd GM, Chen WR, Greer CA. Olfactory bulb. In: Handbook of Brain Microcircuits (2nd ed.), edited by Shepherd GM, Grillner S. New York: Oxford University Press, 2018.
Shepherd GM, Chen WR, Willhite D, Migliore M, Greer CA. The olfactory granule cell: from classical enigma to central role in olfactory processing. Brain Res Brain Res Rev 55: 373–382, 2007. doi:10.1016/j.brainresrev.2007.03.005.
Snitz K, Yablonka A, Weiss T, Frumin I, Khan RM, Sobel N. Predicting odor perceptual similarity from odor structure. PLOS Comput Biol 9: e1003184, 2013. doi:10.1371/journal.pcbi.1003184.
Stewart WB, Kauer JS, Shepherd GM. Functional organization of rat olfactory bulb analysed by the 2-deoxyglucose method. J Comp Neurol 185: 715–734, 1979. doi:10.1002/cne.901850407.
Tavakoli A, Schmaltz A, Schwarz D, Margrie TW, Schaefer AT, Kollo M. Quantitative association of anatomical and functional classes of olfactory bulb neurons. J Neurosci 38: 7204–7220, 2018. doi:10.1523/JNEUROSCI.0303-18.2018.
Thomas CG, Miller AJ, Westbrook GL. SK channel regulation of dendritic excitability and dendrodendritic inhibition in the olfactory bulb. J Neurophysiol 94: 3743–3750, 2005. doi:10.1152/jn.00797.2005.
Vincis R, Gschwend O, Bhaukaurally K, Beroud J, Carleton A. Dense representation of natural odorants in the mouse olfactory bulb. Nat Neurosci 15: 537–539, 2012. doi:10.1038/nn.3057.
Wachowiak M, Shipley MT. Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. Semin Cell Dev Biol 17: 411–423, 2006. doi:10.1016/j.semcdb.2006.04.007.
Whitman MC, Greer CA. Synaptic integration of adult-generated olfactory bulb granule cells: basal axodendritic centrifugal input precedes apical dendrodendritic local circuits. J Neurosci 27: 9951–9961, 2007. doi:10.1523/JNEUROSCI.1633-07.2007.
Wilson DA, Barkai E. Olfactory cortex. In: Handbook of Brain Microcircuits, edited by Shepherd GM, Grillner S. New York: Oxford University Press, 2018.
Woolf TB, Greer CA. Local communication within dendritic spines: models of second messenger diffusion in granule cell spines of the mammalian olfactory bulb. Synapse 17: 247–267, 1994. doi:10.1002/syn.890170406.
Woolf TB, Shepherd GM, Greer CA. Serial reconstructions of granule cell spines in the mammalian olfactory bulb. Synapse 7: 181–192, 1991. doi:10.1002/syn.890070303.
Xiong W, Chen WR. Dynamic gating of spike propagation in the mitral cell lateral dendrites. Neuron 34: 115–126, 2002. doi:10.1016/S0896-6273(02)00628-1.
Xu F, Liu N, Kida I, Rothman DL, Hyder F, Shepherd GM. Odor maps of aldehydes and esters revealed by functional MRI in the glomerular layer of the mouse olfactory bulb [Erratum in Proc Natl Acad Sci USA 199: 13734–13735, 2003]. Proc Natl Acad Sci USA 100: 11029–11034, 2003. doi:10.1073/pnas.1832864100.
Yamamoto C, Yamamoto T, Iwama K. The inhibitory systems in the olfactory bulb studied by intracellular recording. J Neurophysiol 26: 403–415, 1963. doi:10.1152/jn.1963.26.3.403.
|